
SBRT bei NSCLC

No conflict of Interest

3D-CRT vs. SBRT

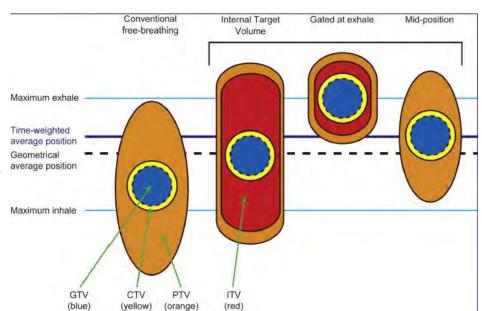
Pro	Con
Higher Precision	Higher technical effort with respiratory motion management
Short treatment time	
Higher biological effect	

Respiratory Motion Management

Conventional (ITV-based)

Contour and treat full tumor ROM

Accelerator beam gating


 Patient breathes normally; beam only on while patient is in a certain phase of the respiratory cycle

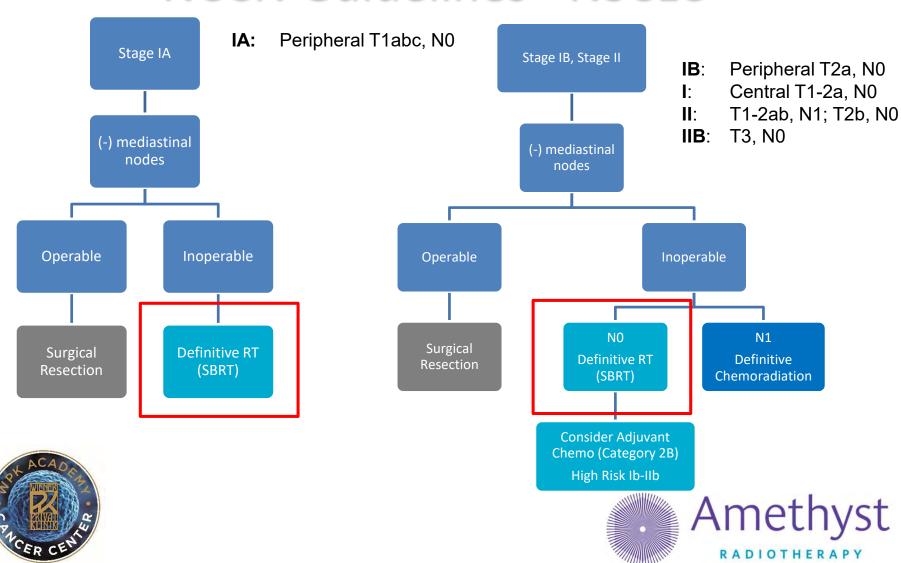
Active breathing control

 Patient holds breath in a certain position; beam only on in that phase of the respiratory cycle

Dynamic tumor tracking

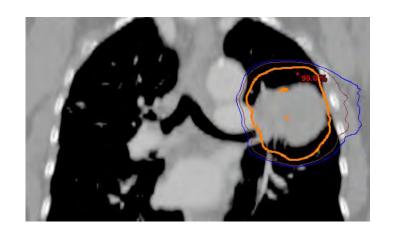
 Patient breathes normally; tumor is tracked; beam always on and moves with tumor

Regardless of the motion management used, an additional "CTV/PTV" margin around our target is needed to ensure that we hit it.



	3DCRT/IMRT	SBRT/SABR
Target Type	≥1 target (e.g., primary + nodes) Any size Close proximity to (or overlapping) critical organs	Single well-defined target Small-medium size Sufficient distance from critical organs
Dose/Fraction	Low	High
# Fractions	30-35	1-5
Biologically Effective Dose	70-90 Gy	≥ 100 Gy
Dose Conformity	Moderate - High	Very High
Immobolization	Secure	Very Secure
Image-Guidance	Should be performed daily, especially IMRT/PT	Required Daily
5 Year Local Control	50-75%	85-95%

Curative Indication NCCN Guidelines - NSCLC


Early-Stage Node-Negative NSCLC

- Surgical resection is the preferred local treatment
 - An anatomical resection with lobectomy or segmentectomy is preferred to wedge resection
 - Includes sampling of at-risk ipsilateral hilar and mediastinal LN
- SBRT for patients who are medically inoperable or refuse surgery
 - Limitations: High volume (DM > 5cm) and "ultra-central" tumors should be treated more cautiously (e.g. 10 instead of 3 fractions)
 - Limited data yet supporting the addition of systemic therapy to SBRT

Potential SBRT Toxicity Depends on Tumor Site

- Fatigue
- Rib fracture, chest wall pain
- Skin Erythema/fibrosis

- Fatigue
- Pneumonitis, atelectasis hemoptysis, fibrosis
- Rib fracture, chest wall pain

Risk of toxicity can be reduced through riskadapted dose-fractionation

Outcomes of SBRT for Early Stage NSCLC

RTOG 0236	RTOG 0915	RTOG 0813
Single Arm Phase II	Randomized Phase II	Single Arm Phase I/II
55	94	120
No	No	No
cT1-2N0M0	cT1-2N0M0	cT1-2N0M0
Peripheral	Peripheral	Central
54Gy/3fx	34Gy/1fx vs. 48Gy/4fx	50-60Gy/5fx
93% @ 5 years	89-93% @ 5 years	88% @ 2 years
40% @ 5 years	30-41%@ 5 years	70% @ 2 years
	Single Arm Phase II 55 No cT1-2N0M0 Peripheral 54Gy/3fx 93% @ 5 years	Single Arm Phase II Frame Phase II Phase II Phase II Phase II No No CT1-2N0M0 Peripheral Peripheral Peripheral 54Gy/3fx 34Gy/1fx vs. 48Gy/4fx 93% @ 5 years 89-93% @ 5 years

- Most recurrences are distant (~30%); most deaths are not cancer related
- Toxicity using risk-adapted dosing:
- Grade 3 in 10-15%, grade 4 in 3-5%, grade 5 in < 1%

Take Home Pearl and *Further Indications* of SBRT for NSCLC

1. SABR for Node-Negative Early-Stage NSCLC

- BED ≥100 Gy are associated with significantly better local control and survival
- For central and ultra-central tumors 4 to 10 fraction regimens are effective and safe
- 3. SABR is most commonly used for tumors up to 5 cm in size

2. SBRT has a Developing role

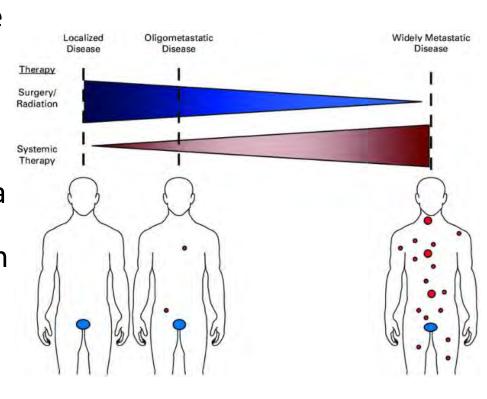
- Boost following definitive chemoradiation in management of LA-NSCLC
- 2. Re-irradiation of locally recurrent disease
- 3. Intrathoracic oligometastases from various primary histologies

Reirradiation of Recurrent disease

- Feasibility of treating with curative intent depends on site of primary
 (P) and recurrent (R) tumors
- Advanced treatment techniques are particularly useful for sparing normal tissue (e.g., IMRT, SBRT, protons)
 - Reirradiating central structures (e.g., esophagus, airway) most challenging
 - Long-term toxicity is the major concern impacted by dose/fraction

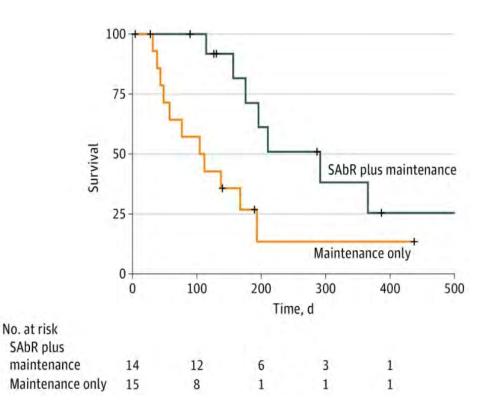
SBRT in the Management of Stage IV NSCLC

Palliative Radiation For Symptom Relief


- Pain
 - Bone metastases
- Neurologic symptoms
 - Spinal cord compression
 - Brain metastases
- Bleeding
 - Endobronchial tumor
- Dyspnea/Dysphagia
 - Tumor obstruction causing SVC, respiratory distress or esophageal narrowing

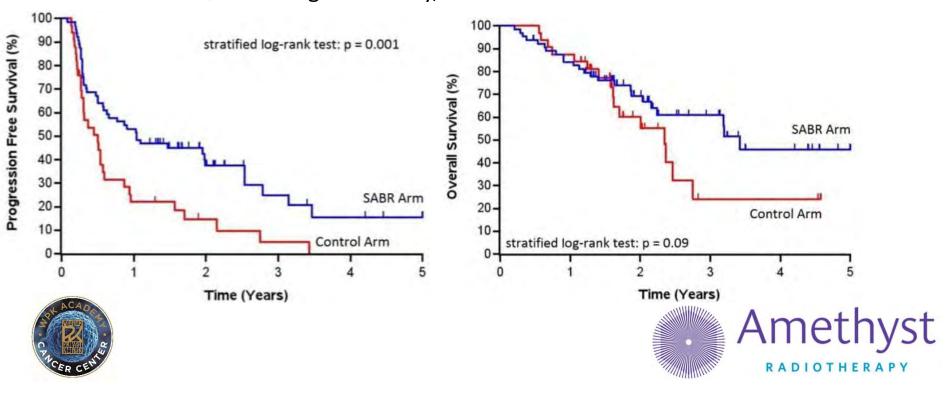
Is all metastatic disease the same?

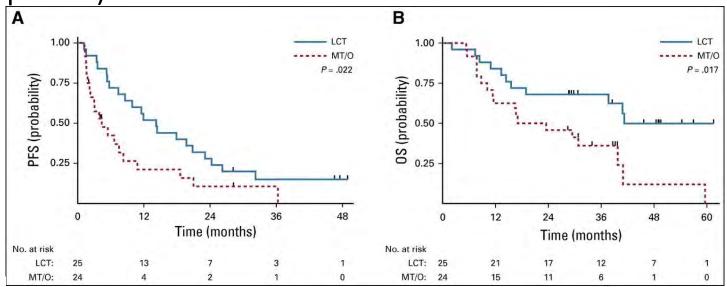
- No! Lung cancer has M1a, M1b and M1c designations because the metastatic state at diagnosis impacts prognosis; a small subset of patients may be cured
- "Oligometastatic" refers to a situation where distant metastases may be limited in number (typically defined as ≤ 5 mets in ≤ 3 organs), and potentially curative treatment can be delivered prior to the development of widespread disease



UT Southwestern Randomized Phase II Trial

- Iyengar et al, JAMA Oncol, 2018
- 29 patients, oligometastatic NSCLC with ≤ 5 sites of diseas (EGFR/ALK negative), PR or SE after induction chemo, randomized to +/- SAbR
- SAbR $\rightarrow \uparrow$ M-PFS (3.5 \rightarrow 9.7mo)

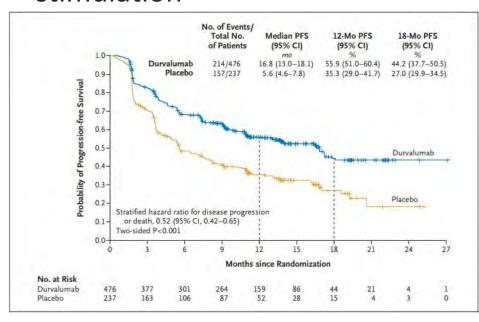


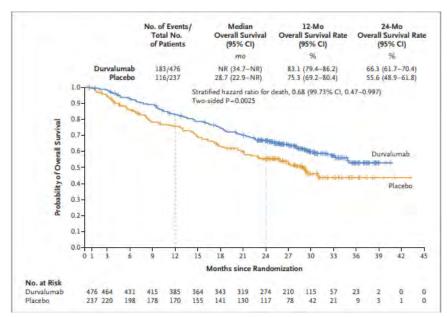

SABR-COMET Randomized Phase II Trial

- Palma et al, Lancet, 2019
- 99 patients, variety of oligometastatic cancers with ≤ 5 sites of disease, PR/SD on systemic therapy, randomized 1:2 to +/- SAbR (at ablative doses)
 - Most common histologies: breast, lung, colorectal, prostate
- SAbR → ↑ M-PFS (6→12mo, p<0.001) & M-OS (28→41mo, p=0.09)
 - Also 个 G2 or higher toxicity, but no difference in QOL

Multi-Institutional Randomized Phase II Trial

- Gomez et al, J Clin Oncol, 2019
- 49 patients with oligometastatic NSCLC with ≤ 3 sites of disease, SD/PR after Pt-based doublet or EGFR/ALK inhibitor, randomized to maintenance systemic therapy +/- local consolidative surgery/RT
- RT → ↑ M-PFS (4.4→14.2mo) and M-OS (17→41mo, p=0.02)





The Future...

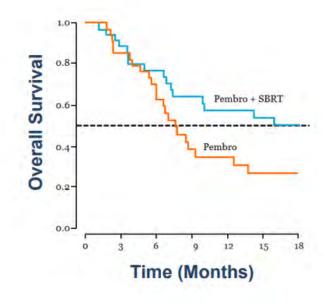
Immunotherapy May Change Our Approach to Locoregional Management Too

 A stronger immune response may be elicited by leaving a tumor in and irradiating it, rather than removing the largest source of antigenic stimulation

PACIFIC Trial, NEJM, 2017

Ergebnisse klinischer Studien: NSCLC – SBRT und IT mit ICI PROSPEKTIV - Wirksamkeit

Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial.

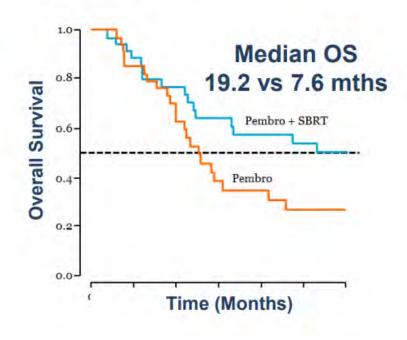

Thelen et al. JAMA Oncol. 2019

Results

doubled response rate @ 12 weeks, 18% vs 36% P = .07

tripled median PFS
1.9 vs 6.6 months hazard ratio, 0.71; P = .19

doubled median OS 7.6 vs 15.9 hazard ratio, 0.66; P = .16

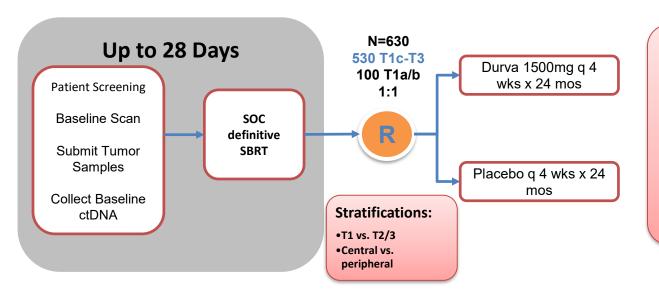


Ergebnisse klinischer Studien: NSCLC – SBRT und IT mit ICI PROSPEKTIV - Wirksamkeit

Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial.

Thelen et al. JAMA Oncol. 2019

	Pembrolizumab + SBRT (n=36)	Pembrolizumah (n=36)
Best overall response, n (%)		
Complete response	3 (12)	1(3)
Partial response	14 (39)	7 (19)
Stable disease	9 (25)	9 (25)
Progressive disease	10 (28)	19 (53)
ORR at 12 weeks, n		
(%) Overall*	13 (39)	7 (21)
PD-L1 0%	4 (22)	1 (5)
PD-L1 1–49%	3 (38)	3 (38)
PD-L1 ≥50%	6 (60)	3 (75)
DCR at 12 weeks	23 (64)	15 (42)



The Future.....Aktive Protokolle

PACIFIC-4 / RTOG 3515

Inclusion Criteria

- Clinical Stage I/II node negative (T1 – T3 N0)
- Medically inoperable or refuse surgery
- ECOG PS 0-2
- All comers for histology and PDL-1 status
- Sync/Metach allowed

Primary Endpoint: PFS (BICR)

Key
Secondary
Endpoint:
OS
Lung Cancer
Mortality

SBRT Dose Reflects Int'l Variability

50-60 Gy/8, 50-55 Gy/5, 42-48 Gy/4, 54 Gy/3

The Future...A Few Examples of Active Clinical Trials in Lung Cancer

CAVE: Not all new substances proofed to be safe with SBRT. Additional surveys needed!

- NRG LU002: Adds RT (to all sites of disease) to systemic therapy for oligometastatic NSCLC
- NRG LU004: Adds immunotherapy to IMRT or 3-D CRT for stage II-III NSCLC with high PD-L1 expression (instead of chemotherapy)
- PACIFIC 4 and NRG/S1914: Adds consolidative immunotherapy to SBRT for stage I NSCLC
- AEGEAN: Adds neoadjuvant immunotherapy to surgery for resectable stage II-III NSCLC
- ALCHEMIST: Evaluating adjuvant use of targeted agents for resected NSCLC
- RTOG 1308: Compares proton therapy to photon therapy for LA-NSCLC
- NRG LU005: Adds immunotherapy to chemoradiation for limited-stage SCLC
- NRG CC003: Hippocampal avoidance PCI for SCLC

Quellen

- <u>David S. Buchberger et al.</u> Stereotactic Body Radiotherapy for the Management of Early-Stage Non–Small-Cell Lung Cancer: A Clinical Overview. *JCO Oncol Pract* 19, 239-249(2023).DOI: <u>10.1200/OP.22.00475</u>
- <u>DrAyush Garg</u>Role of SBRT in lung cancer 8. Okt. 2019•, A topic with precide information regarding role of SBRT in Lung Cancer, https://de.slideshare.net/DrAyushGarg/role-of-sbrt-in-lung-cancer
- <u>Kanhu Charan</u>LUNG SBRT A LITERATURE REVIEW 27. Feb. 2023

 https://de.slideshare.net/kanhucpatro/lung-sbrt-a-literature-review

Sonja Adebahr Dir. Prof. Dr. A.-L. Grosu Department of Radiation Oncology University Medical Center Freiburg

"CHALLENGES IN SBRT", 22. November 2019

SBRT bei NSCLC

VIELEN DANK!

